Statistic plot for features
Usage
FeatureStatPlot(
object,
features,
plot_type = c("violin", "box", "bar", "ridge", "dim", "cor", "heatmap", "dot"),
reduction = NULL,
graph = NULL,
bg_cutoff = 0,
dims = 1:2,
rows_name = "Features",
ident = "seurat_clusters",
assay = NULL,
layer = NULL,
agg = mean,
group_by = NULL,
split_by = NULL,
facet_by = NULL,
xlab = NULL,
ylab = NULL,
x_text_angle = NULL,
...
)
Arguments
- object
A seurat object
- features
A character vector of feature names
- plot_type
Type of the plot. It can be "violin", "box", "bar", "ridge", "dim", "cor", "heatmap" or "dot"
- reduction
Name of the reduction to plot (for example, "umap"), only used when
plot_type
is "dim" or you can to use the reduction as feature.- graph
Specify the graph name to add edges between cell neighbors to the plot, only used when
plot_type
is "dim".- bg_cutoff
Background cutoff for the dim plot, only used when
plot_type
is "dim".- dims
Dimensions to plot, only used when
plot_type
is "dim".- rows_name
The name of the rows in the heatmap, only used when
plot_type
is "heatmap".- ident
The column name in the meta data to identify the cells.
- assay
The assay to use for the feature data.
- layer
The layer to use for the feature data.
- agg
The aggregation function to use for the bar plot.
- group_by
The column name in the meta data to group the cells.
- split_by
Column name in the meta data to split the cells to different plots. If TRUE, the cells are split by the features.
- facet_by
Column name in the meta data to facet the plots. Should be always NULL.
- xlab
The x-axis label.
- ylab
The y-axis label.
- x_text_angle
The angle of the x-axis text. Only used when
plot_type
is "violin", "bar", or "box".- ...
Other arguments passed to the plot functions.
For
plot_type
"violin", the arguments are passed toplotthis::ViolinPlot()
.For
plot_type
"box", the arguments are passed toplotthis::BoxPlot()
.For
plot_type
"bar", the arguments are passed toplotthis::BarPlot()
.For
plot_type
"ridge", the arguments are passed toplotthis::RidgePlot()
.For
plot_type
"dim", the arguments are passed toplotthis::FeatureDimPlot()
.For
plot_type
"heatmap", the arguments are passed toplotthis::Heatmap()
.For
plot_type
"cor" with 2 features, the arguments are passed toplotthis::CorPlot()
.For
plot_type
"cor" with more than 2 features, the arguments are passed toplotthis::CorPairsPlot()
.For
plot_type
"dot", the arguments are passed toplotthis::Heatmap()
withcell_type
set to "dot".
Examples
data(pancreas_sub)
FeatureStatPlot(pancreas_sub, features = c("G2M_score", "nCount_RNA"),
ident = "SubCellType", facet_scales = "free_y")
FeatureStatPlot(pancreas_sub, features = c("G2M_score", "nCount_RNA"),
ident = "SubCellType", plot_type = "box", facet_scales = "free_y")
FeatureStatPlot(pancreas_sub, features = c("G2M_score", "nCount_RNA"),
ident = "SubCellType", plot_type = "bar", facet_scales = "free_y")
FeatureStatPlot(pancreas_sub, features = c("G2M_score", "nCount_RNA"),
ident = "SubCellType", plot_type = "ridge", flip = TRUE, facet_scales = "free_y")
#> Picking joint bandwidth of 0.0498
#> Picking joint bandwidth of 516
#> Picking joint bandwidth of 0.0498
#> Picking joint bandwidth of 516
FeatureStatPlot(pancreas_sub, features = c("G2M_score", "nCount_RNA"),
ident = "SubCellType", facet_scales = "free_y", add_point = TRUE)
FeatureStatPlot(pancreas_sub, features = c("G2M_score", "nCount_RNA"),
ident = "SubCellType", facet_scales = "free_y", add_trend = TRUE)
FeatureStatPlot(pancreas_sub, features = c("G2M_score", "nCount_RNA"),
ident = "SubCellType", facet_scales = "free_y", add_stat = mean)
FeatureStatPlot(pancreas_sub, features = c("G2M_score", "nCount_RNA"),
ident = "SubCellType", facet_scales = "free_y", group_by = "Phase")
#> Warning: Groups with fewer than two datapoints have been dropped.
#> ℹ Set `drop = FALSE` to consider such groups for position adjustment purposes.
#> Warning: Groups with fewer than two datapoints have been dropped.
#> ℹ Set `drop = FALSE` to consider such groups for position adjustment purposes.
#> Warning: Groups with fewer than two datapoints have been dropped.
#> ℹ Set `drop = FALSE` to consider such groups for position adjustment purposes.
#> Warning: Groups with fewer than two datapoints have been dropped.
#> ℹ Set `drop = FALSE` to consider such groups for position adjustment purposes.
FeatureStatPlot(pancreas_sub, features = c("G2M_score"),
ident = "SubCellType", group_by = "Phase", comparisons = TRUE)
#> Detected more than 2 groups. Use multiple_method for comparison
#> Warning: Groups with fewer than two datapoints have been dropped.
#> ℹ Set `drop = FALSE` to consider such groups for position adjustment purposes.
#> Warning: Groups with fewer than two datapoints have been dropped.
#> ℹ Set `drop = FALSE` to consider such groups for position adjustment purposes.
#> Warning: Groups with fewer than two datapoints have been dropped.
#> ℹ Set `drop = FALSE` to consider such groups for position adjustment purposes.
FeatureStatPlot(pancreas_sub, features = c("Rbp4", "Pyy"), ident = "SubCellType",
add_bg = TRUE, add_box = TRUE, stack = TRUE)
FeatureStatPlot(pancreas_sub, features = c(
"Sox9", "Anxa2", "Bicc1", # Ductal
"Neurog3", "Hes6", # EPs
"Fev", "Neurod1", # Pre-endocrine
"Rbp4", "Pyy", # Endocrine
"Ins1", "Gcg", "Sst", "Ghrl" # Beta, Alpha, Delta, Epsilon
), ident = "SubCellType", add_bg = TRUE, stack = TRUE,
legend.position = "top", legend.direction = "horizontal")
FeatureStatPlot(pancreas_sub, plot_type = "box", features = c(
"Sox9", "Anxa2", "Bicc1", # Ductal
"Neurog3", "Hes6", # EPs
"Fev", "Neurod1", # Pre-endocrine
"Rbp4", "Pyy", # Endocrine
"Ins1", "Gcg", "Sst", "Ghrl" # Beta, Alpha, Delta, Epsilon
), ident = "SubCellType", add_bg = TRUE, stack = TRUE, flip = TRUE,
legend.position = "top", legend.direction = "horizontal")
# Use splitting instead of facetting
FeatureStatPlot(pancreas_sub, features = c("Neurog3", "Rbp4", "Ins1"),
ident = "CellType", split_by = TRUE)
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "G2M_score", reduction = "UMAP")
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "G2M_score", reduction = "UMAP",
bg_cutoff = -Inf)
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "G2M_score", reduction = "UMAP",
theme = "theme_blank")
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "G2M_score", reduction = "UMAP",
theme = ggplot2::theme_classic, theme_args = list(base_size = 16))
# Label and highlight cell points
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "Rbp4", reduction = "UMAP",
highlight = 'SubCellType == "Delta"')
FeatureStatPlot(pancreas_sub, plot_type = "dim",
features = "Rbp4", split_by = "Phase", reduction = "UMAP",
highlight = TRUE, theme = "theme_blank")
# Add a density layer
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "Rbp4", reduction = "UMAP",
add_density = TRUE)
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "Rbp4", reduction = "UMAP",
add_density = TRUE, density_filled = TRUE)
#> Warning: Removed 396 rows containing missing values or values outside the scale range
#> (`geom_raster()`).
#> Warning: Removed 396 rows containing missing values or values outside the scale range
#> (`geom_raster()`).
# Change the plot type from point to the hexagonal bin
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "Rbp4", reduction = "UMAP",
hex = TRUE)
#> Warning: Removed 4 rows containing missing values or values outside the scale range
#> (`geom_hex()`).
#> Warning: Removed 4 rows containing missing values or values outside the scale range
#> (`geom_hex()`).
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "Rbp4", reduction = "UMAP",
hex = TRUE, hex_bins = 20)
#> Warning: Removed 3 rows containing missing values or values outside the scale range
#> (`geom_hex()`).
#> Warning: Removed 5 rows containing missing values or values outside the scale range
#> (`geom_hex()`).
#> Warning: Removed 3 rows containing missing values or values outside the scale range
#> (`geom_hex()`).
#> Warning: Removed 5 rows containing missing values or values outside the scale range
#> (`geom_hex()`).
# Show lineages on the plot based on the pseudotime
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "Lineage3", reduction = "UMAP",
lineages = "Lineage3")
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "Lineage3", reduction = "UMAP",
lineages = "Lineage3", lineages_whiskers = TRUE)
FeatureStatPlot(pancreas_sub, plot_type = "dim", features = "Lineage3", reduction = "UMAP",
lineages = "Lineage3", lineages_span = 0.1)
FeatureStatPlot(pancreas_sub, plot_type = "dim",
features = c("Sox9", "Anxa2", "Bicc1"), reduction = "UMAP",
theme = "theme_blank",
theme_args = list(plot.subtitle = ggplot2::element_text(size = 10),
strip.text = ggplot2::element_text(size = 8))
)
# Plot multiple features with different scales
endocrine_markers <- c("Ins1", "Gcg", "Sst", "Ghrl")
FeatureStatPlot(pancreas_sub, endocrine_markers, reduction = "UMAP", plot_type = "dim")
FeatureStatPlot(pancreas_sub, endocrine_markers, reduction = "UMAP", lower_quantile = 0,
upper_quantile = 0.8, plot_type = "dim")
FeatureStatPlot(pancreas_sub, endocrine_markers, reduction = "UMAP",
lower_cutoff = 1, upper_cutoff = 4, plot_type = "dim")
FeatureStatPlot(pancreas_sub, endocrine_markers, reduction = "UMAP", bg_cutoff = 2,
lower_cutoff = 2, upper_cutoff = 4, plot_type = "dim")
FeatureStatPlot(pancreas_sub, c("Sst", "Ghrl"), split_by = "Phase", reduction = "UMAP",
plot_type = "dim")
FeatureStatPlot(pancreas_sub, features = c("G2M_score", "nCount_RNA"),
ident = "SubCellType", plot_type = "dim", facet_by = "Phase", split_by = TRUE, ncol = 1)
# Heatmap
features <- c(
"Sox9", "Anxa2", "Bicc1", # Ductal
"Neurog3", "Hes6", # EPs
"Fev", "Neurod1", # Pre-endocrine
"Rbp4", "Pyy", # Endocrine
"Ins1", "Gcg", "Sst", "Ghrl" # Beta, Alpha, Delta, Epsilon
)
rows_data <- data.frame(
features = features,
group = c(
"Ductal", "Ductal", "Ductal", "EPs", "EPs", "Pre-endocrine",
"Pre-endocrine", "Endocrine", "Endocrine", "Beta", "Alpha", "Delta", "Epsilon"),
TF = c(TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
TRUE, TRUE, TRUE),
CSPA = c(FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE,
FALSE, FALSE, FALSE)
)
FeatureStatPlot(pancreas_sub, features = features, ident = "SubCellType",
plot_type = "heatmap", name = "Expression Level")
FeatureStatPlot(pancreas_sub, features = features, ident = "Phase",
plot_type = "heatmap", name = "Expression Level", columns_split_by = "SubCellType")
FeatureStatPlot(pancreas_sub, features = features, ident = "SubCellType",
plot_type = "heatmap", cell_type = "bars", name = "Expression Level")
FeatureStatPlot(pancreas_sub, features = features, ident = "SubCellType", cell_type = "dot",
plot_type = "heatmap", name = "Expression Level", dot_size = function(x) sum(x > 0) / length(x),
dot_size_name = "Percent Expressed", add_bg = TRUE,
rows_data = rows_data, show_row_names = TRUE, rows_split_by = "group", cluster_rows = FALSE,
column_annotation = c("Phase", "G2M_score"),
column_annotation_type = list(Phase = "pie", G2M_score = "violin"),
column_annotation_params = list(G2M_score = list(show_legend = FALSE)),
row_annotation = c("TF", "CSPA"),
row_annotation_side = "right",
row_annotation_type = list(TF = "simple", CSPA = "simple"))
#> Warning: Assuming 'row_annotation_agg["TF"] = dplyr::first' for the simple column annotation
#> Warning: Assuming 'row_annotation_agg["CSPA"] = dplyr::first' for the simple column annotation
FeatureStatPlot(pancreas_sub, features = features, ident = "SubCellType", cell_type = "dot",
plot_type = "heatmap", name = "Expression Level", dot_size = function(x) sum(x > 0) / length(x),
dot_size_name = "Percent Expressed", add_bg = TRUE,
rows_data = rows_data, show_column_names = TRUE, rows_split_by = "group",
cluster_rows = FALSE, flip = TRUE, palette = "YlOrRd",
column_annotation = c("Phase", "G2M_score"),
column_annotation_type = list(Phase = "pie", G2M_score = "violin"),
column_annotation_params = list(G2M_score = list(show_legend = FALSE)),
row_annotation = c("TF", "CSPA"),
row_annotation_side = "right",
row_annotation_type = list(TF = "simple", CSPA = "simple"))
#> Warning: Assuming 'row_annotation_agg["TF"] = dplyr::first' for the simple column annotation
#> Warning: Assuming 'row_annotation_agg["CSPA"] = dplyr::first' for the simple column annotation
FeatureStatPlot(pancreas_sub, features = features, ident = "SubCellType", cell_type = "violin",
plot_type = "heatmap", name = "Expression Level", show_row_names = TRUE,
cluster_columns = FALSE, rows_split_by = "group", rows_data = rows_data)
FeatureStatPlot(pancreas_sub, features = features, ident = "SubCellType", cell_type = "dot",
plot_type = "heatmap", dot_size = function(x) sum(x > 0) / length(x),
dot_size_name = "Percent Expressed", palette = "viridis", add_reticle = TRUE,
rows_data = rows_data, name = "Expression Level", show_row_names = TRUE,
rows_split_by = "group")
# Use plot_type = "dot" to as a shortcut for heatmap with cell_type = "dot"
FeatureStatPlot(pancreas_sub, features = features, ident = "SubCellType", plot_type = "dot")
named_features <- list(
Ductal = c("Sox9", "Anxa2", "Bicc1"),
EPs = c("Neurog3", "Hes6"),
`Pre-endocrine` = c("Fev", "Neurod1"),
Endocrine = c("Rbp4", "Pyy"),
Beta = "Ins1", Alpha = "Gcg", Delta = "Sst", Epsilon = "Ghrl"
)
FeatureStatPlot(pancreas_sub, features = named_features, ident = "SubCellType",
plot_type = "heatmap", name = "Expression Level", show_row_names = TRUE)
# Correlation plot
FeatureStatPlot(pancreas_sub, features = c("Pyy", "Rbp4"), plot_type = "cor",
anno_items = c("eq", "r2", "spearman"))
FeatureStatPlot(pancreas_sub, features = c("Ins1", "Gcg", "Sst", "Ghrl"),
plot_type = "cor")