Skip to contents

Generate scatter correlation plot for two variables.

Usage

CorPlot(
  data,
  x,
  y,
  group_by = NULL,
  group_by_sep = "_",
  group_name = NULL,
  split_by = NULL,
  split_by_sep = "_",
  pt_size = 2,
  pt_shape = 16,
  raster = FALSE,
  alpha = 1,
  raster_dpi = c(512, 512),
  highlight = NULL,
  highlight_color = "black",
  highlight_size = 1,
  highlight_alpha = 1,
  highlight_stroke = 0.8,
  anno_items = c("eq", "r2", "p"),
  anno_size = 3,
  anno_fg = "black",
  anno_bg = "white",
  anno_bg_r = 0.1,
  anno_position = c("topleft", "topright", "bottomleft", "bottomright", "tl", "tr", "bl",
    "br"),
  add_smooth = TRUE,
  smooth_color = "red2",
  smooth_width = 1.5,
  smooth_se = FALSE,
  theme = "theme_this",
  theme_args = list(),
  palette = ifelse(is.null(group_by), "Spectral", "Paired"),
  palcolor = NULL,
  title = NULL,
  subtitle = NULL,
  xlab = NULL,
  ylab = NULL,
  facet_by = NULL,
  facet_scales = "fixed",
  facet_ncol = NULL,
  facet_nrow = NULL,
  facet_byrow = TRUE,
  aspect.ratio = 1,
  legend.position = waiver(),
  legend.direction = "vertical",
  seed = 8525,
  combine = TRUE,
  nrow = NULL,
  ncol = NULL,
  byrow = TRUE,
  ...
)

Arguments

data

A data frame.

x

A character string specifying the column name of the data frame to plot for the x-axis.

y

A character string specifying the column name of the data frame to plot for the y-axis.

group_by

Columns to group the data for plotting For those plotting functions that do not support multiple groups, They will be concatenated into one column, using group_by_sep as the separator

group_by_sep

The separator for multiple group_by columns. See group_by

group_name

The name of the group in the legend.

split_by

The column(s) to split data by and plot separately.

split_by_sep

The separator for multiple split_by columns. See split_by

pt_size

The size of the points.

pt_shape

The shape of the points.

raster

Whether to use raster graphics for plotting.

alpha

A numeric value specifying the transparency of the plot.

raster_dpi

The DPI of the raster graphics.

highlight

The items to be highlighted. Could be either a vector of rownames if data has rownames, or a vector of indices, or An expression that can be evaluated by dplyr::filter to get the highlighted items.

highlight_color

The color of the highlighted points.

highlight_size

The size of the highlighted points.

highlight_alpha

The alpha of the highlighted points.

highlight_stroke

The stroke of the highlighted points.

anno_items

The items to be annotated on the plot. Available items: "eq", "r2", "p", "spearman", "pearson", "kendall", "n".

anno_size

The size of the annotation text.

anno_fg

The color of the annotation text.

anno_bg

The background color of the annotation text.

anno_bg_r

The radius of the background of the annotation text.

anno_position

The position of the annotation text. Available positions: "topleft", "topright", "bottomleft", "bottomright". Shortcuts: "tl", "tr", "bl", "br".

add_smooth

Whether to add a linear regression line.

smooth_color

The color of the regression line.

smooth_width

The width of the regression line.

smooth_se

Whether to add the standard error band to the regression line.

theme

A character string or a theme class (i.e. ggplot2::theme_classic) specifying the theme to use. Default is "theme_this".

theme_args

A list of arguments to pass to the theme function.

palette

A character string specifying the palette to use. A named list or vector can be used to specify the palettes for different split_by values.

palcolor

A character string specifying the color to use in the palette. A named list can be used to specify the colors for different split_by values. If some values are missing, the values from the palette will be used (palcolor will be NULL for those values).

title

A character string specifying the title of the plot. A function can be used to generate the title based on the default title. This is useful when split_by is used and the title needs to be dynamic.

subtitle

A character string specifying the subtitle of the plot.

xlab

A character string specifying the x-axis label.

ylab

A character string specifying the y-axis label.

facet_by

A character string specifying the column name of the data frame to facet the plot. Otherwise, the data will be split by split_by and generate multiple plots and combine them into one using patchwork::wrap_plots

facet_scales

Whether to scale the axes of facets. Default is "fixed" Other options are "free", "free_x", "free_y". See ggplot2::facet_wrap

facet_ncol

A numeric value specifying the number of columns in the facet. When facet_by is a single column and facet_wrap is used.

facet_nrow

A numeric value specifying the number of rows in the facet. When facet_by is a single column and facet_wrap is used.

facet_byrow

A logical value indicating whether to fill the plots by row. Default is TRUE.

aspect.ratio

A numeric value specifying the aspect ratio of the plot.

legend.position

A character string specifying the position of the legend. if waiver(), for single groups, the legend will be "none", otherwise "right".

legend.direction

A character string specifying the direction of the legend.

seed

The random seed to use. Default is 8525.

combine

Whether to combine the plots into one when facet is FALSE. Default is TRUE.

nrow

A numeric value specifying the number of rows in the facet.

ncol

A numeric value specifying the number of columns in the facet.

byrow

A logical value indicating whether to fill the plots by row.

...

Additional arguments.

Value

A ggplot object or a list of ggplot objects if combine is FALSE.

Examples

data(iris)
CorPlot(iris, "Sepal.Length", "Sepal.Width", group_by = "Species")

CorPlot(iris, "Sepal.Length", "Sepal.Width", group_by = "Species",
 highlight = 'Species == "setosa"', highlight_stroke = 1.5,
 anno_items = c("eq", "pearson"), anno_position = "bottomright")

CorPlot(iris, "Sepal.Length", "Sepal.Width", facet_by = "Species", facet_scales = "free")

CorPlot(iris, "Sepal.Length", "Sepal.Width", split_by = "Species",
        palette = c(setosa = "Set1", versicolor = "Dark2", virginica = "Paired"))