module

biopipen.ns.delim

Tools to deal with csv/tsv files

Classes
class

biopipen.ns.delim.RowsBinder(*args, **kwds)Proc

Bases
biopipen.core.proc.Proc pipen.proc.Proc

Bind rows of input files

Attributes
  • cache Should we detect whether the jobs are cached?
  • desc The description of the process. Will use the summary fromthe docstring by default.
  • dirsig When checking the signature for caching, whether should we walkthrough the content of the directory? This is sometimes time-consuming if the directory is big.
  • envs The arguments that are job-independent, useful for common optionsacross jobs.
  • envs_depth How deep to update the envs when subclassed.
  • error_strategy How to deal with the errors
    • - retry, ignore, halt
    • - halt to halt the whole pipeline, no submitting new jobs
    • - terminate to just terminate the job itself
  • export When True, the results will be exported to <pipeline.outdir>Defaults to None, meaning only end processes will export. You can set it to True/False to enable or disable exporting for processes
  • forks How many jobs to run simultaneously?
  • input The keys for the input channel
  • input_data The input data (will be computed for dependent processes)
  • lang The language for the script to run. Should be the path to theinterpreter if lang is not in $PATH.
  • name The name of the process. Will use the class name by default.
  • nexts Computed from requires to build the process relationships
  • num_retries How many times to retry to jobs once error occurs
  • order The execution order for this process. The bigger the numberis, the later the process will be executed. Default: 0. Note that the dependent processes will always be executed first. This doesn't work for start processes either, whose orders are determined by Pipen.set_starts()
  • output The output keys for the output channel(the data will be computed)
  • output_data The output data (to pass to the next processes)
  • plugin_opts Options for process-level plugins
  • requires The dependency processes
  • scheduler The scheduler to run the jobs
  • scheduler_opts The options for the scheduler
  • script The script template for the process
  • submission_batch How many jobs to be submited simultaneously
  • template Define the template engine to use.This could be either a template engine or a dict with key engine indicating the template engine and the rest the arguments passed to the constructor of the pipen.template.Template object. The template engine could be either the name of the engine, currently jinja2 and liquidpy are supported, or a subclass of pipen.template.Template. You can subclass pipen.template.Template to use your own template engine.
Input
  • infiles The input files to bind.The input files should have the same number of columns, and same delimiter.
Output
  • outfile The output file with rows bound
Envs
  • filenames Whether to add filename as the last column.Either a string of an R function that starts with function or a list of names (or string separated by comma) to add for each input file. The R function takes the path of the input file as the only argument and should return a string. The string will be added as the last column of the output file.
  • filenames_col The column name for the filenames columns
  • header (flag) Whether the input files have header
  • sep The separator of the input files
Classes
Methods
  • __init_subclass__() Do the requirements inferring since we need them to build up theprocess relationship </>
  • from_proc(proc, name, desc, envs, envs_depth, cache, export, error_strategy, num_retries, forks, input_data, order, plugin_opts, requires, scheduler, scheduler_opts, submission_batch) (Type) Create a subclass of Proc using another Proc subclass or Proc itself</>
  • gc() GC process for the process to save memory after it's done</>
  • init() Init all other properties and jobs</>
  • log(level, msg, *args, logger) Log message for the process</>
  • run() Run the process</>
class

pipen.proc.ProcMeta(name, bases, namespace, **kwargs)

Bases
abc.ABCMeta

Meta class for Proc

Methods
  • __call__(cls, *args, **kwds) (Proc) Make sure Proc subclasses are singletons</>
  • __instancecheck__(cls, instance) Override for isinstance(instance, cls).</>
  • __repr__(cls) (str) Representation for the Proc subclasses</>
  • __subclasscheck__(cls, subclass) Override for issubclass(subclass, cls).</>
  • register(cls, subclass) Register a virtual subclass of an ABC.</>
staticmethod
register(cls, subclass)

Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

staticmethod
__instancecheck__(cls, instance)

Override for isinstance(instance, cls).

staticmethod
__subclasscheck__(cls, subclass)

Override for issubclass(subclass, cls).

staticmethod
__repr__(cls) → str

Representation for the Proc subclasses

staticmethod
__call__(cls, *args, **kwds)

Make sure Proc subclasses are singletons

Parameters
  • *args (Any) and
  • **kwds (Any) Arguments for the constructor
Returns (Proc)

The Proc instance

classmethod

from_proc(proc, name=None, desc=None, envs=None, envs_depth=None, cache=None, export=None, error_strategy=None, num_retries=None, forks=None, input_data=None, order=None, plugin_opts=None, requires=None, scheduler=None, scheduler_opts=None, submission_batch=None)

Create a subclass of Proc using another Proc subclass or Proc itself

Parameters
  • proc (Type) The Proc subclass
  • name (str, optional) The new name of the process
  • desc (str, optional) The new description of the process
  • envs (Mapping, optional) The arguments of the process, will overwrite parent oneThe items that are specified will be inherited
  • envs_depth (int, optional) How deep to update the envs when subclassed.
  • cache (bool, optional) Whether we should check the cache for the jobs
  • export (bool, optional) When True, the results will be exported to<pipeline.outdir> Defaults to None, meaning only end processes will export. You can set it to True/False to enable or disable exporting for processes
  • error_strategy (str, optional) How to deal with the errors
    • - retry, ignore, halt
    • - halt to halt the whole pipeline, no submitting new jobs
    • - terminate to just terminate the job itself
  • num_retries (int, optional) How many times to retry to jobs once error occurs
  • forks (int, optional) New forks for the new process
  • input_data (Any, optional) The input data for the process. Only when this processis a start process
  • order (int, optional) The order to execute the new process
  • plugin_opts (Mapping, optional) The new plugin options, unspecified items will beinherited.
  • requires (Sequence, optional) The required processes for the new process
  • scheduler (str, optional) The new shedular to run the new process
  • scheduler_opts (Mapping, optional) The new scheduler options, unspecified items willbe inherited.
  • submission_batch (int, optional) How many jobs to be submited simultaneously
Returns (Type)

The new process class

classmethod

__init_subclass__()

Do the requirements inferring since we need them to build up theprocess relationship

method

init()

Init all other properties and jobs

method

gc()

GC process for the process to save memory after it's done

method

log(level, msg, *args, logger=<LoggerAdapter pipen.core (WARNING)>)

Log message for the process

Parameters
  • level (int | str) The log level of the record
  • msg (str) The message to log
  • *args The arguments to format the message
  • logger (LoggerAdapter, optional) The logging logger
method

run()

Run the process

class

biopipen.ns.delim.SampleInfo(*args, **kwds)Proc

Bases
biopipen.core.proc.Proc pipen.proc.Proc

List sample information and perform statistics

Attributes
  • cache Should we detect whether the jobs are cached?
  • desc The description of the process. Will use the summary fromthe docstring by default.
  • dirsig When checking the signature for caching, whether should we walkthrough the content of the directory? This is sometimes time-consuming if the directory is big.
  • envs The arguments that are job-independent, useful for common optionsacross jobs.
  • envs_depth How deep to update the envs when subclassed.
  • error_strategy How to deal with the errors
    • - retry, ignore, halt
    • - halt to halt the whole pipeline, no submitting new jobs
    • - terminate to just terminate the job itself
  • export When True, the results will be exported to <pipeline.outdir>Defaults to None, meaning only end processes will export. You can set it to True/False to enable or disable exporting for processes
  • forks How many jobs to run simultaneously?
  • input The keys for the input channel
  • input_data The input data (will be computed for dependent processes)
  • lang The language for the script to run. Should be the path to theinterpreter if lang is not in $PATH.
  • name The name of the process. Will use the class name by default.
  • nexts Computed from requires to build the process relationships
  • num_retries How many times to retry to jobs once error occurs
  • order The execution order for this process. The bigger the numberis, the later the process will be executed. Default: 0. Note that the dependent processes will always be executed first. This doesn't work for start processes either, whose orders are determined by Pipen.set_starts()
  • output The output keys for the output channel(the data will be computed)
  • output_data The output data (to pass to the next processes)
  • plugin_opts Options for process-level plugins
  • requires The dependency processes
  • scheduler The scheduler to run the jobs
  • scheduler_opts The options for the scheduler
  • script The script template for the process
  • submission_batch How many jobs to be submited simultaneously
  • template Define the template engine to use.This could be either a template engine or a dict with key engine indicating the template engine and the rest the arguments passed to the constructor of the pipen.template.Template object. The template engine could be either the name of the engine, currently jinja2 and liquidpy are supported, or a subclass of pipen.template.Template. You can subclass pipen.template.Template to use your own template engine.
Input
  • infile The input file to list sample informationThe input file should be a csv/tsv file with header
Output
  • outfile The output file with sample information, with mutated columnsif envs.save_mutated is True. The basename of the output file will be the same as the input file. The file name of each plot will be slugified from the case name. Each plot has 3 formats: pdf, png and code.zip, which contains the data and R code to reproduce the plot.
Envs
  • defaults (ns) The default parameters for envs.stats.
    • - on: The column name in the data for the stats.
        Default is Sample. The column could be either continuous or not.
    • - subset: An R expression to subset the data.
        If you want to keep the distinct records, you can use
        !duplicated(<col>).
    • - group: The column name in the data for the group ids.
        If not provided, all records will be regarded as one group.
    • - na_group (flag): Whether to include NAs in the group.
    • - each: The column in the data to split the analysis in different
        plots.
    • - ncol (type=int): The number of columns in the plot when each
        is not NULL. Default is 2.
    • - na_each (flag): Whether to include NAs in the each column.
    • - plot: Type of plot. If on is continuous, it could be
        boxplot (default), violin, violin+boxplot or histogram.
        If on is not continuous, it could be barplot or
        pie (default).
    • - devpars (ns): The device parameters for the plot.
        - width (type=int): The width of the plot.
        - height (type=int): The height of the plot.
        - res (type=int): The resolution of the plot.
  • exclude_cols The columns to exclude in the table in the report.Could be a list or a string separated by comma.
  • mutaters (type=json) A dict of mutaters to mutate the data frame.The key is the column name and the value is the R expression to mutate the column. The dict will be transformed to a list in R and passed to dplyr::mutate. You may also use paired() to identify paired samples. The function takes following arguments:
    • * df: The data frame. Use . if the function is called in
        a dplyr pipe.
    • * id_col: The column name in df for the ids to be returned in
        the final output.
    • * compare_col: The column name in df to compare the values for
        each id in id_col.
    • * idents: The values in compare_col to compare. It could be
        either an an integer or a vector. If it is an integer,
        the number of values in compare_col must be the same as
        the integer for the id to be regarded as paired. If it is
        a vector, the values in compare_col must be the same
        as the values in idents for the id to be regarded as paired.
    • * uniq: Whether to return unique ids or not. Default is TRUE.
        If FALSE, you can mutate the meta data frame with the
        returned ids. Non-paired ids will be NA.
  • save_mutated (flag) Whether to save the mutated columns.
  • sep The separator of the input file.
  • stats (type=json) The statistics to perform.The keys are the case names and the values are the parameters inheirted from envs.defaults.
Classes
Methods
  • __init_subclass__() Do the requirements inferring since we need them to build up theprocess relationship </>
  • from_proc(proc, name, desc, envs, envs_depth, cache, export, error_strategy, num_retries, forks, input_data, order, plugin_opts, requires, scheduler, scheduler_opts, submission_batch) (Type) Create a subclass of Proc using another Proc subclass or Proc itself</>
  • gc() GC process for the process to save memory after it's done</>
  • init() Init all other properties and jobs</>
  • log(level, msg, *args, logger) Log message for the process</>
  • run() Run the process</>
class

pipen.proc.ProcMeta(name, bases, namespace, **kwargs)

Bases
abc.ABCMeta

Meta class for Proc

Methods
  • __call__(cls, *args, **kwds) (Proc) Make sure Proc subclasses are singletons</>
  • __instancecheck__(cls, instance) Override for isinstance(instance, cls).</>
  • __repr__(cls) (str) Representation for the Proc subclasses</>
  • __subclasscheck__(cls, subclass) Override for issubclass(subclass, cls).</>
  • register(cls, subclass) Register a virtual subclass of an ABC.</>
staticmethod
register(cls, subclass)

Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

staticmethod
__instancecheck__(cls, instance)

Override for isinstance(instance, cls).

staticmethod
__subclasscheck__(cls, subclass)

Override for issubclass(subclass, cls).

staticmethod
__repr__(cls) → str

Representation for the Proc subclasses

staticmethod
__call__(cls, *args, **kwds)

Make sure Proc subclasses are singletons

Parameters
  • *args (Any) and
  • **kwds (Any) Arguments for the constructor
Returns (Proc)

The Proc instance

classmethod

from_proc(proc, name=None, desc=None, envs=None, envs_depth=None, cache=None, export=None, error_strategy=None, num_retries=None, forks=None, input_data=None, order=None, plugin_opts=None, requires=None, scheduler=None, scheduler_opts=None, submission_batch=None)

Create a subclass of Proc using another Proc subclass or Proc itself

Parameters
  • proc (Type) The Proc subclass
  • name (str, optional) The new name of the process
  • desc (str, optional) The new description of the process
  • envs (Mapping, optional) The arguments of the process, will overwrite parent oneThe items that are specified will be inherited
  • envs_depth (int, optional) How deep to update the envs when subclassed.
  • cache (bool, optional) Whether we should check the cache for the jobs
  • export (bool, optional) When True, the results will be exported to<pipeline.outdir> Defaults to None, meaning only end processes will export. You can set it to True/False to enable or disable exporting for processes
  • error_strategy (str, optional) How to deal with the errors
    • - retry, ignore, halt
    • - halt to halt the whole pipeline, no submitting new jobs
    • - terminate to just terminate the job itself
  • num_retries (int, optional) How many times to retry to jobs once error occurs
  • forks (int, optional) New forks for the new process
  • input_data (Any, optional) The input data for the process. Only when this processis a start process
  • order (int, optional) The order to execute the new process
  • plugin_opts (Mapping, optional) The new plugin options, unspecified items will beinherited.
  • requires (Sequence, optional) The required processes for the new process
  • scheduler (str, optional) The new shedular to run the new process
  • scheduler_opts (Mapping, optional) The new scheduler options, unspecified items willbe inherited.
  • submission_batch (int, optional) How many jobs to be submited simultaneously
Returns (Type)

The new process class

classmethod

__init_subclass__()

Do the requirements inferring since we need them to build up theprocess relationship

method

init()

Init all other properties and jobs

method

gc()

GC process for the process to save memory after it's done

method

log(level, msg, *args, logger=<LoggerAdapter pipen.core (WARNING)>)

Log message for the process

Parameters
  • level (int | str) The log level of the record
  • msg (str) The message to log
  • *args The arguments to format the message
  • logger (LoggerAdapter, optional) The logging logger
method

run()

Run the process