scplotter to work with 10x Visium data prepared by Seurat¶

Go back to scplotter documentation: https://pwwang.github.io/scplotter/

Mouse Brain: 10x Genomics Xenium In Situ¶

See: https://satijalab.org/seurat/articles/seurat5_spatial_vignette_2#mouse-brain-10x-genomics-xenium-in-situ

InĀ [1]:
suppressPackageStartupMessages({
    library(Seurat)
})
# Load the scplotter package
# library(scplotter)
devtools::load_all()
# devtools::load_all("../../../plotthis")

path <- "data/xenium_tiny_subset/outs"
# path <- "data/Xenium_Giotto_workshop"
# Load the Xenium data
xenium.obj <- LoadXenium(path, fov = "fov")
# remove cells with 0 counts
xenium.obj <- subset(xenium.obj, subset = nCount_Xenium > 0)

xenium.obj
ℹ Loading scplotter
Warning message:
ā€œcells did not contain a segmentation_method column. Skipping...ā€
Genome matrix has multiple modalities, returning a list of matrices for this genome

Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œNot validating FOV objectsā€
Warning message:
ā€œNot validating Centroids objectsā€
Warning message:
ā€œNot validating Centroids objectsā€
Warning message:
ā€œNot validating FOV objectsā€
Warning message:
ā€œNot validating FOV objectsā€
Warning message:
ā€œNot validating FOV objectsā€
Warning message:
ā€œNot validating Seurat objectsā€
An object of class Seurat 
541 features across 36553 samples within 4 assays 
Active assay: Xenium (248 features, 0 variable features)
 1 layer present: counts
 3 other assays present: BlankCodeword, ControlCodeword, ControlProbe
 1 spatial field of view present: fov
InĀ [2]:
options(repr.plot.width = 10, repr.plot.height = 5)

FeatureStatPlot(xenium.obj, features = c("nFeature_Xenium", "nCount_Xenium"),
    facet_scales = "free_y")
Warning message in GetAssayData.StdAssay(object = object[[assay]], layer = layer):
ā€œdata layer is not found and counts layer is usedā€
No description has been provided for this image
InĀ [7]:
options(repr.plot.width = 6, repr.plot.height = 8)
devtools::load_all()

SpatDimPlot(xenium.obj, image = "black", features = c("Gad1", "Sst", "Pvalb", "Gfap"),
    nmols = 20000, points_size = 0.1, points_palette = "Set1")
ℹ Loading scplotter
No description has been provided for this image
InĀ [8]:
options(repr.plot.width = 8, repr.plot.height = 12)

SpatFeaturePlot(xenium.obj, layer = "counts", image = "black",
    features = c("Cux2", "Rorb", "Bcl11b", "Foxp2"),
    points_size = 0.2, points_color_name = "Expression")
No description has been provided for this image
InĀ [9]:
options(repr.plot.width = 11, repr.plot.height = 5, future.globals.maxSize = 1024 ^ 3)

cropped.coords <- Crop(xenium.obj[["fov"]], x = c(1200, 2900), y = c(3750, 4550), coords = "plot")
xenium.obj[["zoom"]] <- cropped.coords
# visualize cropped area with cell segmentations & selected molecules
# The segmentation boundary was not loaded anyway...
# DefaultBoundary(xenium.obj[["zoom"]]) <- "segmentation"

SpatDimPlot(xenium.obj, fov = "zoom", image = "black", features = c("Gad1", "Sst", "Npy2r", "Pvalb", "Nrn1"),
    nmols = 10000, points_size = 0.1, points_palette = "Set1", shapes = TRUE)
Warning message:
ā€œKey ā€˜Xenium_’ taken, using ā€˜zoom_’ insteadā€
Warning message in SpatPlot.Seurat.FOV(object, fov = fov, boundaries = boundaries, :
ā€œ[SpatPlot] 'shapes' is set to TRUE, meaning the same boundaries as points will be used. You may want to provide a different boundaries for shapes. Otherwise the shapes is plotted as points.ā€
No description has been provided for this image
InĀ [10]:
xenium.obj <- SCTransform(xenium.obj, assay = "Xenium")
xenium.obj <- RunPCA(xenium.obj, npcs = 30, features = rownames(xenium.obj))
xenium.obj <- RunUMAP(xenium.obj, dims = 1:30)
xenium.obj <- FindNeighbors(xenium.obj, reduction = "pca", dims = 1:30)
xenium.obj <- FindClusters(xenium.obj, resolution = 0.3)
Running SCTransform on assay: Xenium

vst.flavor='v2' set. Using model with fixed slope and excluding poisson genes.

Calculating cell attributes from input UMI matrix: log_umi

Variance stabilizing transformation of count matrix of size 248 by 36553

Model formula is y ~ log_umi

Get Negative Binomial regression parameters per gene

Using 248 genes, 5000 cells

Second step: Get residuals using fitted parameters for 248 genes

Computing corrected count matrix for 248 genes

Calculating gene attributes

Wall clock passed: Time difference of 3.8174 secs

Determine variable features

Centering data matrix

Place corrected count matrix in counts slot

Set default assay to SCT

PC_ 1 
Positive:  Slc17a7, Nrn1, Epha4, Neurod6, Nwd2, Gad1, Cpne4, Rasgrf2, Rims3, Lamp5 
	   2010300C02Rik, Dkk3, Slc17a6, Pvalb, Garnl3, Cpne6, Fhod3, Plcxd2, Gad2, Tmem132d 
	   Kcnh5, Dner, Calb1, Bhlhe22, Bcl11b, Nell1, Bdnf, Rasl10a, Satb2, Arc 
Negative:  Igf2, Dcn, Fmod, Slc13a4, Fn1, Aldh1a2, Col1a1, Ly6a, Cldn5, Spp1 
	   Gfap, Nr2f2, Gjb2, Cyp1b1, Acta2, Pecam1, Adgrl4, Pdgfra, Acvrl1, Kdr 
	   Cd93, Ccn2, Cobll1, Fgd5, Sox17, Igfbp5, Carmn, Lyz2, Pglyrp1, Emcn 
PC_ 2 
Positive:  Gjc3, Opalin, Sox10, Gfap, Clmn, Vwc2l, Zfp536, Sema6a, Gpr17, Gng12 
	   Tmem163, Prox1, Adamtsl1, Dpy19l1, Cobll1, Cdh20, Arhgef28, Igfbp5, Chrm2, Sema3d 
	   Carmn, Aqp4, Fign, Pdgfra, Cspg4, Ntsr2, Lyz2, Siglech, Adamts2, Rmst 
Negative:  Slc17a7, Fn1, Igf2, Nrn1, Cldn5, Epha4, Neurod6, Ly6a, Dcn, Rasgrf2 
	   Lamp5, Fmod, Aldh1a2, Dkk3, 2010300C02Rik, Slc13a4, Car4, Nwd2, Pecam1, Gad1 
	   Col1a1, Igfbp4, Spp1, Cpne4, Rims3, Igfbp6, Acvrl1, Cpne6, Adgrl4, Calb1 
PC_ 3 
Positive:  Cldn5, Ly6a, Adgrl4, Fn1, Pecam1, Acvrl1, Kdr, Cd93, Pglyrp1, Sox17 
	   Emcn, Car4, Nostrin, Fgd5, Zfp366, Mecom, Slfn5, Paqr5, Arc, Cabp7 
	   Cobll1, Laptm5, Acsbg1, Gjc3, Siglech, Opalin, Kctd12, Ntsr2, Trem2, Sema6a 
Negative:  Slc13a4, Igf2, Dcn, Fmod, Aldh1a2, Nwd2, Col1a1, Vat1l, Calb2, Spp1 
	   Pdgfra, Gjb2, Necab2, Slc17a6, Cyp1b1, Syt6, Nr2f2, Nrp2, Dner, Slit2 
	   Col6a1, Cpne4, Spag16, Strip2, Sncg, Thsd7a, Ppp1r1b, Gucy1a1, Mapk4, Chat 
PC_ 4 
Positive:  Slc17a7, Dkk3, Cabp7, Neurod6, 2010300C02Rik, Arc, Epha4, Igfbp4, Bcl11b, Fmod 
	   Meis2, Laptm5, Dcn, Gad1, Bhlhe22, Aldh1a2, Cpne6, Rasl10a, Lamp5, Col1a1 
	   Col6a1, Igfbp6, Gfap, Satb2, Trem2, Cplx3, Gm2115, Gfra2, Garnl3, Siglech 
Negative:  Nwd2, Calb2, Slc17a6, Necab2, Syt6, Vat1l, Nrp2, Sncg, Cpne4, Cldn5 
	   Ly6a, Dner, Gucy1a1, Thsd7a, Chat, Kctd8, Tmem163, Tacr1, Tmem255a, Cacna2d2 
	   Adgrl4, Pecam1, Cntnap4, Rmst, Cbln1, Fn1, Kdr, Cd93, Inpp4b, Acvrl1 
PC_ 5 
Positive:  Gad1, Pvalb, Gad2, Rab3b, Opalin, Gjc3, Dpy19l1, Cdh13, Sox10, Garnl3 
	   Parm1, Rims3, Tmem132d, Lamp5, Neto2, Vip, Btbd11, Cntnap4, Plcxd2, Ccn2 
	   Cort, Penk, Fn1, Fhod3, Zfp536, Spp1, Col6a1, Nxph3, Sst, Dcn 
Negative:  Cabp7, Gfap, Aqp4, Laptm5, Ntsr2, Trem2, Siglech, Acsbg1, Cd53, Slc39a12 
	   2010300C02Rik, Kctd12, Cpne4, Cd300c2, Bhlhe22, Gm2115, Ikzf1, Rfx4, Necab2, Igfbp5 
	   Sipa1l3, Cpne6, Cd68, Clmn, Rmst, Nwd2, Nrp2, Orai2, Spi1, Prdm8 

Warning message:
ā€œThe default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per sessionā€
23:39:15 UMAP embedding parameters a = 0.9922 b = 1.112

Found more than one class "dist" in cache; using the first, from namespace 'spam'

Also defined by ā€˜BiocGenerics’

23:39:15 Read 36553 rows and found 30 numeric columns

23:39:15 Using Annoy for neighbor search, n_neighbors = 30

Found more than one class "dist" in cache; using the first, from namespace 'spam'

Also defined by ā€˜BiocGenerics’

23:39:15 Building Annoy index with metric = cosine, n_trees = 50

0%   10   20   30   40   50   60   70   80   90   100%

[----|----|----|----|----|----|----|----|----|----|

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
|

23:39:19 Writing NN index file to temp file /tmp/m161047/RtmpHUkWS9/file3e09c1184c944

23:39:19 Searching Annoy index using 1 thread, search_k = 3000

23:39:31 Annoy recall = 100%

23:39:31 Commencing smooth kNN distance calibration using 1 thread
 with target n_neighbors = 30

23:39:33 Initializing from normalized Laplacian + noise (using RSpectra)

23:39:35 Commencing optimization for 200 epochs, with 1669008 positive edges

23:39:53 Optimization finished

Computing nearest neighbor graph

Computing SNN

Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 36553
Number of edges: 1340890

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9587
Number of communities: 28
Elapsed time: 4 seconds
InĀ [11]:
options(repr.plot.width = 6, repr.plot.height = 8)

SpatDimPlot(xenium.obj, image = "black", points_size = 0.1)
Warning message:
ā€œNo FOV associated with assay 'SCT', using global default FOVā€
No description has been provided for this image
InĀ [12]:
options(repr.plot.width = 7, repr.plot.height = 8)

SpatFeaturePlot(xenium.obj, layer = "counts", image = "black",
    features = "Slc17a7", points_size = 0.2, points_color_name = "Slc17a7 Expression")
Warning message:
ā€œNo FOV associated with assay 'SCT', using global default FOVā€
No description has been provided for this image
InĀ [13]:
options(repr.plot.width = 8, repr.plot.height = 7)

crop <- Crop(xenium.obj[["fov"]], x = c(600, 2100), y = c(900, 4700))
xenium.obj[["crop"]] <- crop
p1 <- SpatFeaturePlot(xenium.obj, fov = "crop", features = "Slc17a7",
    image = "black", points_size = 0.2)

# use ext argument to crop
p2 <- SpatFeaturePlot(xenium.obj, ext = c(600, 2100, 900, 4700), features = "Slc17a7",
    image = "black", points_size = 0.2)

p1 + p2
Warning message:
ā€œKey ā€˜Xenium_’ taken, using ā€˜crop_’ insteadā€
Warning message in `[<-.data.frame`(`*tmp*`, , features, value = structure(list(:
ā€œreplacement element 1 has 36553 rows to replace 11872 rowsā€
Warning message:
ā€œNo FOV associated with assay 'SCT', using global default FOVā€
No description has been provided for this image

Mini Xenium Dataset provided by Giotto vignette¶

See: https://drieslab.github.io/giotto_workshop_2024/xenium-1.html

InĀ [14]:
path <- "data/Xenium_Giotto_workshop"
# Load the Xenium data
g <- LoadXenium(path, fov = "fov")
# remove cells with 0 counts
g <- subset(g, subset = nCount_Xenium > 0)

g
Warning message:
ā€œcells did not contain a segmentation_method column. Skipping...ā€
Error in option$fn(file.path(data.dir, option$filename)) : File not found
10X data contains more than one type and is being returned as a list containing matrices of each type.

Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œFeature names cannot have underscores ('_'), replacing with dashes ('-')ā€
Warning message:
ā€œNot validating FOV objectsā€
Warning message:
ā€œNot validating Centroids objectsā€
Warning message:
ā€œNot validating Centroids objectsā€
Warning message:
ā€œNot validating FOV objectsā€
Warning message:
ā€œNot validating FOV objectsā€
Warning message:
ā€œNot validating FOV objectsā€
Warning message:
ā€œNot validating Seurat objectsā€
An object of class Seurat 
541 features across 7654 samples within 4 assays 
Active assay: Xenium (377 features, 0 variable features)
 1 layer present: counts
 3 other assays present: BlankCodeword, ControlCodeword, ControlProbe
 1 spatial field of view present: fov
InĀ [15]:
# Simple Visualization
options(repr.plot.width = 7, repr.plot.height = 6)

SpatDimPlot(
    g,
    image = "black",
    # put shapes at last
    layers = c("image", "points", "shapes"),
    features = c("ABCC11", "ACE2", "ACKR1", "ACTA2", "ACTG2", "ADAM28"),
    shapes_border_color = "cyan",
    shapes_border_size = 0.1,
    shapes_fill_by = "black",
    points_size = 0.1,
    nmols = 10000
)
Warning message in SpatPlot.Seurat.FOV(object, fov = fov, boundaries = boundaries, :
ā€œ[SpatPlot] 'shapes' is set to TRUE, meaning the same boundaries as points will be used. You may want to provide a different boundaries for shapes. Otherwise the shapes is plotted as points.ā€
No description has been provided for this image
InĀ [2]:
x <- sessionInfo()
x <- capture.output(print(x))
# hide the BLAS/LAPACK paths
x <- x[!startsWith(x, "BLAS/LAPACK:")]
cat(paste(x, collapse = "\n"))
R version 4.3.3 (2024-02-29)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: Red Hat Enterprise Linux 8.10 (Ootpa)

Matrix products: default

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/Chicago
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] scplotter_0.4.0    Seurat_5.3.0       SeuratObject_5.0.2 sp_2.1-4          

loaded via a namespace (and not attached):
  [1] cubature_2.1.1              RcppAnnoy_0.0.22           
  [3] splines_4.3.3               later_1.3.2                
  [5] pbdZMQ_0.3-11               bitops_1.0-7               
  [7] R.oo_1.26.0                 tibble_3.2.1               
  [9] polyclip_1.10-6             fastDummies_1.7.3          
 [11] lifecycle_1.0.4             rprojroot_2.0.4            
 [13] hdf5r_1.3.8                 globals_0.16.3             
 [15] lattice_0.22-6              MASS_7.3-60.0.1            
 [17] magrittr_2.0.3              plotly_4.10.4              
 [19] remotes_2.5.0               httpuv_1.6.15              
 [21] sctransform_0.4.1           spam_2.11-0                
 [23] sessioninfo_1.2.2           pkgbuild_1.4.4             
 [25] spatstat.sparse_3.1-0       reticulate_1.38.0          
 [27] cowplot_1.1.3               pbapply_1.7-2              
 [29] RColorBrewer_1.1-3          abind_1.4-5                
 [31] pkgload_1.3.4               zlibbioc_1.48.0            
 [33] Rtsne_0.17                  GenomicRanges_1.54.1       
 [35] R.utils_2.12.3              purrr_1.0.2                
 [37] ggraph_2.2.1                BiocGenerics_0.48.1        
 [39] RCurl_1.98-1.13             tweenr_2.0.3               
 [41] evmix_2.12                  circlize_0.4.16            
 [43] GenomeInfoDbData_1.2.11     IRanges_2.36.0             
 [45] S4Vectors_0.40.2            ggrepel_0.9.6              
 [47] irlba_2.3.5.1               listenv_0.9.1              
 [49] spatstat.utils_3.1-1        iNEXT_3.0.1                
 [51] MatrixModels_0.5-3          goftest_1.2-3              
 [53] RSpectra_0.16-1             scRepertoire_2.2.1         
 [55] spatstat.random_3.2-3       fitdistrplus_1.1-11        
 [57] parallelly_1.38.0           codetools_0.2-20           
 [59] DelayedArray_0.28.0         xml2_1.3.6                 
 [61] ggforce_0.4.2               shape_1.4.6.1              
 [63] tidyselect_1.2.1            farver_2.1.2               
 [65] viridis_0.6.5               matrixStats_1.1.0          
 [67] stats4_4.3.3                base64enc_0.1-3            
 [69] spatstat.explore_3.2-6      jsonlite_1.8.8             
 [71] tidygraph_1.3.0             ellipsis_0.3.2             
 [73] progressr_0.14.0            ggalluvial_0.12.5          
 [75] ggridges_0.5.6              survival_3.7-0             
 [77] ggnewscale_0.5.0            tools_4.3.3                
 [79] stringdist_0.9.12           ica_1.0-3                  
 [81] Rcpp_1.0.13                 glue_1.8.0                 
 [83] gridExtra_2.3               SparseArray_1.2.2          
 [85] MatrixGenerics_1.14.0       usethis_2.2.3              
 [87] GenomeInfoDb_1.38.1         IRdisplay_1.1              
 [89] dplyr_1.1.4                 withr_3.0.1                
 [91] fastmap_1.2.0               fansi_1.0.6                
 [93] SparseM_1.84                digest_0.6.37              
 [95] R6_2.5.1                    mime_0.12                  
 [97] colorspace_2.1-1            scattermore_1.2            
 [99] tensor_1.5                  spatstat.data_3.1-2        
[101] R.methodsS3_1.8.2           utf8_1.2.4                 
[103] tidyr_1.3.1                 generics_0.1.3             
[105] data.table_1.15.4           graphlayouts_1.1.0         
[107] httr_1.4.7                  htmlwidgets_1.6.4          
[109] S4Arrays_1.2.0              uwot_0.1.16                
[111] pkgconfig_2.0.3             gtable_0.3.5               
[113] lmtest_0.9-40               SingleCellExperiment_1.24.0
[115] XVector_0.42.0              htmltools_0.5.8.1          
[117] profvis_0.3.8               dotCall64_1.2              
[119] scales_1.3.0                Biobase_2.62.0             
[121] png_0.1-8                   ggdendro_0.2.0             
[123] rstudioapi_0.16.0           rjson_0.2.21               
[125] reshape2_1.4.4              uuid_1.2-0                 
[127] nlme_3.1-165                GlobalOptions_0.1.2        
[129] repr_1.1.7                  cachem_1.1.0               
[131] zoo_1.8-12                  stringr_1.5.1              
[133] KernSmooth_2.23-24          parallel_4.3.3             
[135] miniUI_0.1.1.1              arrow_19.0.1               
[137] desc_1.4.3                  pillar_1.9.0               
[139] grid_4.3.3                  vctrs_0.6.5                
[141] RANN_2.6.1                  urlchecker_1.0.1           
[143] VGAM_1.1-12                 promises_1.3.0             
[145] xtable_1.8-4                cluster_2.1.6              
[147] evaluate_0.24.0             truncdist_1.0-2            
[149] cli_3.6.3                   compiler_4.3.3             
[151] rlang_1.1.4                 crayon_1.5.3               
[153] future.apply_1.11.2         forcats_1.0.0              
[155] plyr_1.8.9                  fs_1.6.4                   
[157] stringi_1.8.7               viridisLite_0.4.2          
[159] deldir_2.0-4                assertthat_0.2.1           
[161] gsl_2.1-8                   munsell_0.5.1              
[163] lazyeval_0.2.2              devtools_2.4.5             
[165] spatstat.geom_3.2-9         quantreg_5.98              
[167] Matrix_1.6-5                IRkernel_1.3.2             
[169] RcppHNSW_0.6.0              patchwork_1.3.0            
[171] bit64_4.0.5                 future_1.34.0              
[173] ggplot2_3.5.1               shiny_1.8.1.1              
[175] plotthis_0.7.0              SummarizedExperiment_1.32.0
[177] evd_2.3-7.1                 ROCR_1.0-11                
[179] gridtext_0.1.5              igraph_1.5.1               
[181] memoise_2.0.1               bit_4.0.5