scplotter to work with 10x VisiumHD data prepared by Seurat¶
Go back to scplotter documentation: https://pwwang.github.io/scplotter/
InĀ [1]:
suppressPackageStartupMessages({
library(Seurat)
})
# Load the scplotter package
# library(scplotter)
devtools::load_all()
# devtools::load_all("../../../plotthis")
ā¹ Loading scplotter
InĀ [2]:
# https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-libraries-of-mouse-intestine
counts <- Read10X_h5("data/Visium_HD_Mouse_Small_Intestine/binned_outputs/square_008um/filtered_feature_bc_matrix.h5")
# Create a Seurat object
object <- CreateSeuratObject(counts = counts, assay = "Spatial", project = "Visium_HD_Mouse_Small_Intestine")
# Add spatial coordinates
object[["slice1"]] <- Read10X_Image("data/Visium_HD_Mouse_Small_Intestine/binned_outputs/square_008um/spatial/")
object <- NormalizeData(object)
object
Warning message: āAdding image with unordered cellsā Normalizing layer: counts
An object of class Seurat 19059 features across 351817 samples within 1 assay Active assay: Spatial (19059 features, 0 variable features) 2 layers present: counts, data 1 spatial field of view present: slice1
InĀ [6]:
options(repr.plot.width = 12, repr.plot.height = 6)
plot1 <- FeatureStatPlot(object, features = "nCount_Spatial",
ident = "orig.ident", add_point = TRUE, legend.position = "none")
plot2 <- SpatFeaturePlot(object, features = "nCount_Spatial")
plot1 + plot2
InĀ [7]:
SpatFeaturePlot(object, features = c("Ighm", "Jchain"))
InĀ [8]:
# simulate the clustering
set.seed(8525)
object$seurat_clusters <- paste0("c", sample(1:5, ncol(object), replace = TRUE))
Idents(object) <- "seurat_clusters"
options(repr.plot.width = 6, repr.plot.height = 5)
SpatDimPlot(object)
InĀ [2]:
x <- sessionInfo()
x <- capture.output(print(x))
# hide the BLAS/LAPACK paths
x <- x[!startsWith(x, "BLAS/LAPACK:")]
cat(paste(x, collapse = "\n"))
R version 4.4.3 (2025-02-28) Platform: x86_64-conda-linux-gnu Running under: Red Hat Enterprise Linux 8.10 (Ootpa) Matrix products: default locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/Chicago tzcode source: system (glibc) attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] scplotter_0.4.0 Seurat_5.3.0 SeuratObject_5.1.0 sp_2.2-0 loaded via a namespace (and not attached): [1] cubature_2.1.4 RcppAnnoy_0.0.22 [3] splines_4.4.3 later_1.4.2 [5] pbdZMQ_0.3-14 bitops_1.0-9 [7] tibble_3.2.1 polyclip_1.10-7 [9] fastDummies_1.7.5 lifecycle_1.0.4 [11] rprojroot_2.0.4 globals_0.18.0 [13] lattice_0.22-7 MASS_7.3-64 [15] magrittr_2.0.3 plotly_4.10.4 [17] remotes_2.5.0 httpuv_1.6.15 [19] sctransform_0.4.2 spam_2.11-1 [21] sessioninfo_1.2.3 pkgbuild_1.4.8 [23] spatstat.sparse_3.1-0 reticulate_1.42.0 [25] cowplot_1.1.3 pbapply_1.7-2 [27] RColorBrewer_1.1-3 abind_1.4-5 [29] pkgload_1.4.0 zlibbioc_1.48.2 [31] Rtsne_0.17 GenomicRanges_1.54.1 [33] purrr_1.0.4 ggraph_2.2.1 [35] BiocGenerics_0.48.1 RCurl_1.98-1.17 [37] tweenr_2.0.3 evmix_2.12 [39] circlize_0.4.16 GenomeInfoDbData_1.2.11 [41] IRanges_2.36.0 S4Vectors_0.40.2 [43] ggrepel_0.9.6 irlba_2.3.5.1 [45] listenv_0.9.1 spatstat.utils_3.1-4 [47] iNEXT_3.0.1 MatrixModels_0.5-4 [49] goftest_1.2-3 RSpectra_0.16-2 [51] scRepertoire_2.2.1 spatstat.random_3.4-1 [53] fitdistrplus_1.2-2 parallelly_1.45.0 [55] codetools_0.2-20 DelayedArray_0.28.0 [57] xml2_1.3.8 ggforce_0.4.2 [59] shape_1.4.6.1 tidyselect_1.2.1 [61] farver_2.1.2 viridis_0.6.5 [63] matrixStats_1.5.0 stats4_4.4.3 [65] base64enc_0.1-3 spatstat.explore_3.4-3 [67] jsonlite_2.0.0 tidygraph_1.3.0 [69] ellipsis_0.3.2 progressr_0.15.1 [71] ggridges_0.5.6 ggalluvial_0.12.5 [73] survival_3.8-3 ggnewscale_0.5.1 [75] tools_4.4.3 stringdist_0.9.15 [77] ica_1.0-3 Rcpp_1.0.14 [79] glue_1.8.0 gridExtra_2.3 [81] SparseArray_1.2.4 MatrixGenerics_1.14.0 [83] usethis_3.1.0 GenomeInfoDb_1.38.8 [85] IRdisplay_1.1 dplyr_1.1.4 [87] withr_3.0.2 fastmap_1.2.0 [89] SparseM_1.84-2 digest_0.6.37 [91] R6_2.6.1 mime_0.13 [93] colorspace_2.1-1 scattermore_1.2 [95] tensor_1.5 spatstat.data_3.1-6 [97] tidyr_1.3.1 generics_0.1.4 [99] data.table_1.17.4 graphlayouts_1.2.2 [101] httr_1.4.7 htmlwidgets_1.6.4 [103] S4Arrays_1.2.1 uwot_0.2.3 [105] pkgconfig_2.0.3 gtable_0.3.6 [107] lmtest_0.9-40 SingleCellExperiment_1.24.0 [109] XVector_0.42.0 htmltools_0.5.8.1 [111] profvis_0.4.0 dotCall64_1.2 [113] scales_1.4.0 Biobase_2.62.0 [115] png_0.1-8 spatstat.univar_3.1-3 [117] ggdendro_0.2.0 rstudioapi_0.17.1 [119] rjson_0.2.23 reshape2_1.4.4 [121] uuid_1.2-1 nlme_3.1-168 [123] GlobalOptions_0.1.2 repr_1.1.7 [125] cachem_1.1.0 zoo_1.8-14 [127] stringr_1.5.1 KernSmooth_2.23-26 [129] parallel_4.4.3 miniUI_0.1.2 [131] desc_1.4.3 pillar_1.10.2 [133] grid_4.4.3 vctrs_0.6.5 [135] RANN_2.6.2 urlchecker_1.0.1 [137] VGAM_1.1-13 promises_1.3.2 [139] xtable_1.8-4 cluster_2.1.8.1 [141] evaluate_1.0.3 truncdist_1.0-2 [143] cli_3.6.5 compiler_4.4.3 [145] rlang_1.1.6 crayon_1.5.3 [147] future.apply_1.20.0 forcats_1.0.0 [149] plyr_1.8.9 fs_1.6.6 [151] stringi_1.8.7 viridisLite_0.4.2 [153] deldir_2.0-4 assertthat_0.2.1 [155] gsl_2.1-8 lazyeval_0.2.2 [157] devtools_2.4.5 spatstat.geom_3.4-1 [159] quantreg_6.00 Matrix_1.7-3 [161] IRkernel_1.3.2 RcppHNSW_0.6.0 [163] patchwork_1.3.0 future_1.58.0 [165] ggplot2_3.5.2 shiny_1.10.0 [167] plotthis_0.7.0 SummarizedExperiment_1.32.0 [169] evd_2.3-7.1 ROCR_1.0-11 [171] gridtext_0.1.5 igraph_2.0.3 [173] memoise_2.0.1