scplotter to work with SlideSeq data prepared by Giotto¶

See: https://drieslab.github.io/Giotto_website/articles/slideseq_mouse_brain.html

Go back to scplotter documentation: https://pwwang.github.io/scplotter/

InĀ [1]:
library(Giotto)

# Ensure Giotto can access a python env
genv_exists <- suppressMessages(checkGiottoEnvironment())
print(genv_exists)

python_path <- file.path(Sys.getenv("HOME"), "miniconda3", "envs", "giotto_env", "bin", "python")
Sys.setenv(RETICULATE_PYTHON = python_path)

invisible(capture.output(suppressMessages(set_giotto_python_path(python_path = python_path))))

# library(scplotter)
devtools::load_all()
Loading required package: GiottoClass

Newer devel version of GiottoClass on GitHub: 0.4.8

Giotto Suite 4.2.1

[1] TRUE
ℹ Loading scplotter
InĀ [2]:
library(Giotto)

## Set instructions
results_folder <- "data/Giotto_SlideSeq.results"

instructions <- createGiottoInstructions(
    save_dir = results_folder,
    save_plot = FALSE,
    show_plot = TRUE,
    return_plot = TRUE,
    python_path = python_path
)

## Provide the path to the visium folder
data_path <- "data/Giotto_SlideSeq"

expression_matrix <- get10Xmatrix(file.path(data_path, "2020-12-19_Puck_201112_26.matched.digital_expression"))
spatial_locs <- data.table::fread(file.path(data_path, "2020-12-19_Puck_201112_26.BeadLocationsForR.csv.tar"))

spatial_locs <- spatial_locs[spatial_locs$barcodes %in% colnames(expression_matrix),]

giotto_object <- createGiottoObject(
  expression = expression_matrix,
  spatial_locs = spatial_locs,
  instructions = instructions
)

force(giotto_object)
python already initialized in this session
 active environment : 'giotto_env'
 python version : 3.10

An object of class giotto 
>Active spat_unit:  cell 
>Active feat_type:  rna 
dimensions    : 21697, 20618 (features, cells)
[SUBCELLULAR INFO]
[AGGREGATE INFO]
expression -----------------------
  [cell][rna] raw
spatial locations ----------------
  [cell] raw


Use objHistory() to see steps and params used
InĀ [3]:
options(repr.plot.width = 12, repr.plot.height = 6)
# devtools::load_all()

p1 <- SpatDimPlot(giotto_object, points_size = 2, points_color_by = "lightblue")
p2 <- SpatDimPlot(giotto_object, points_size = 2, points_color_by = "lightblue",
    points_shape = 21, points_border_color = "grey40")

p1 + p2
No description has been provided for this image
InĀ [4]:
giotto_object <- filterGiotto(giotto_object,
                              min_det_feats_per_cell = 10,
                              feat_det_in_min_cells = 10)

giotto_object <- normalizeGiotto(giotto_object)
giotto_object <- addStatistics(giotto_object)
giotto_object <- runPCA(giotto_object)
giotto_object <- runUMAP(giotto_object,
                         dimensions_to_use = 1:10)
giotto_object <- createNearestNetwork(giotto_object)

giotto_object <- doLeidenCluster(giotto_object,
                                 resolution = 1)
completed 1: preparation

completed 2: subset expression data

completed 3: subset spatial locations

completed 4: subset cell metadata

completed 5: subset feature metadata

completed 6: subset spatial network(s)

completed 7: subsetted dimension reductions

completed 8: subsetted nearest network(s)

completed 9: subsetted spatial enrichment results

Feature type:  rna 
Number of cells removed:  275  out of  20618 
Number of feats removed:  6204  out of  21697 
first scale feats and then cells

Warning message in asMethod(object):
ā€œsparse->dense coercion: allocating vector of size 2.3 GiBā€
Setting expression [cell][rna] normalized

Setting expression [cell][rna] scaled

calculating statistics for "normalized" expression

"hvf" was not found in the gene metadata information.
 all genes will be used.

Setting dimension reduction [cell][rna] pca

Setting dimension reduction [cell][rna] umap

InĀ [5]:
options(repr.plot.width = 7, repr.plot.height = 7)
# devtools::load_all()

SpatFeaturePlot(giotto_object, features = "nr_feats", points_shape = 21,
    points_palette = "Reds", points_border_color = "grey")
No description has been provided for this image
InĀ [9]:
options(repr.plot.width = 7, repr.plot.height = 7)

SpatDimPlot(giotto_object, group_by = "leiden_clus")
No description has been provided for this image
InĀ [11]:
options(repr.plot.width = 14, repr.plot.height = 6.5)

p1 <- CellDimPlot(giotto_object, group_by = "leiden_clus", label = TRUE)
p2 <- CellDimPlot(giotto_object, group_by = "leiden_clus", reduction = "umap", label = TRUE)

p1 + p2
No description has been provided for this image
InĀ [7]:
x <- sessionInfo()
x <- capture.output(print(x))
# hide the BLAS/LAPACK paths
x <- x[!startsWith(x, "BLAS/LAPACK:")]
cat(paste(x, collapse = "\n"))
R version 4.4.3 (2025-02-28)
Platform: x86_64-conda-linux-gnu
Running under: Red Hat Enterprise Linux 8.10 (Ootpa)

Matrix products: default

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/Chicago
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] scplotter_0.4.0   Giotto_4.2.1      GiottoClass_0.4.7

loaded via a namespace (and not attached):
  [1] fs_1.6.6                    matrixStats_1.5.0          
  [3] spatstat.sparse_3.1-0       bitops_1.0-9               
  [5] sf_1.0-20                   devtools_2.4.5             
  [7] httr_1.4.7                  RColorBrewer_1.1-3         
  [9] repr_1.1.7                  profvis_0.4.0              
 [11] tools_4.4.3                 sctransform_0.4.2          
 [13] backports_1.5.0             R6_2.6.1                   
 [15] uwot_0.2.3                  lazyeval_0.2.2             
 [17] urlchecker_1.0.1            withr_3.0.2                
 [19] sp_2.2-0                    gridExtra_2.3              
 [21] GiottoUtils_0.2.5           progressr_0.15.1           
 [23] quantreg_6.00               cli_3.6.5                  
 [25] Biobase_2.62.0              spatstat.explore_3.4-3     
 [27] fastDummies_1.7.5           iNEXT_3.0.1                
 [29] labeling_0.4.3              Seurat_5.3.0               
 [31] spatstat.data_3.1-6         proxy_0.4-27               
 [33] ggridges_0.5.6              pbapply_1.7-2              
 [35] pbdZMQ_0.3-14               dbscan_1.2.2               
 [37] R.utils_2.13.0              stringdist_0.9.15          
 [39] parallelly_1.45.0           sessioninfo_1.2.3          
 [41] VGAM_1.1-13                 rstudioapi_0.17.1          
 [43] generics_0.1.4              shape_1.4.6.1              
 [45] gtools_3.9.5                ica_1.0-3                  
 [47] spatstat.random_3.4-1       dplyr_1.1.4                
 [49] Matrix_1.7-3                S4Vectors_0.40.2           
 [51] abind_1.4-5                 R.methodsS3_1.8.2          
 [53] terra_1.8-42                lifecycle_1.0.4            
 [55] SummarizedExperiment_1.32.0 SparseArray_1.2.4          
 [57] Rtsne_0.17                  grid_4.4.3                 
 [59] promises_1.3.2              crayon_1.5.3               
 [61] miniUI_0.1.2                lattice_0.22-7             
 [63] beachmat_2.18.1             cowplot_1.1.3              
 [65] pillar_1.10.2               GenomicRanges_1.54.1       
 [67] rjson_0.2.23                future.apply_1.20.0        
 [69] codetools_0.2-20            glue_1.8.0                 
 [71] spatstat.univar_3.1-3       data.table_1.17.4          
 [73] remotes_2.5.0               vctrs_0.6.5                
 [75] png_0.1-8                   spam_2.11-1                
 [77] gtable_0.3.6                assertthat_0.2.1           
 [79] cachem_1.1.0                S4Arrays_1.2.1             
 [81] mime_0.13                   tidygraph_1.3.0            
 [83] survival_3.8-3              SingleCellExperiment_1.24.0
 [85] units_0.8-5                 ellipsis_0.3.2             
 [87] scRepertoire_2.2.1          fitdistrplus_1.2-2         
 [89] ROCR_1.0-11                 nlme_3.1-168               
 [91] usethis_3.1.0               RcppAnnoy_0.0.22           
 [93] evd_2.3-7.1                 GenomeInfoDb_1.38.8        
 [95] rprojroot_2.0.4             irlba_2.3.5.1              
 [97] KernSmooth_2.23-26          DBI_1.2.3                  
 [99] plotthis_0.7.1              colorspace_2.1-1           
[101] BiocGenerics_0.48.1         tidyselect_1.2.1           
[103] compiler_4.4.3              SparseM_1.84-2             
[105] xml2_1.3.8                  desc_1.4.3                 
[107] ggdendro_0.2.0              DelayedArray_0.28.0        
[109] plotly_4.10.4               checkmate_2.3.2            
[111] scales_1.4.0                classInt_0.4-11            
[113] lmtest_0.9-40               rappdirs_0.3.3             
[115] stringr_1.5.1               digest_0.6.37              
[117] goftest_1.2-3               spatstat.utils_3.1-4       
[119] XVector_0.42.0              htmltools_0.5.8.1          
[121] GiottoVisuals_0.2.12        pkgconfig_2.0.3            
[123] base64enc_0.1-3             MatrixGenerics_1.14.0      
[125] fastmap_1.2.0               rlang_1.1.6                
[127] GlobalOptions_0.1.2         htmlwidgets_1.6.4          
[129] shiny_1.10.0                farver_2.1.2               
[131] zoo_1.8-14                  jsonlite_2.0.0             
[133] BiocParallel_1.36.0         R.oo_1.27.1                
[135] BiocSingular_1.18.0         RCurl_1.98-1.17            
[137] magrittr_2.0.3              GenomeInfoDbData_1.2.11    
[139] dotCall64_1.2               patchwork_1.3.0            
[141] IRkernel_1.3.2              Rcpp_1.0.14                
[143] evmix_2.12                  ggnewscale_0.5.1           
[145] viridis_0.6.5               reticulate_1.42.0          
[147] truncdist_1.0-2             stringi_1.8.7              
[149] ggalluvial_0.12.5           ggraph_2.2.1               
[151] zlibbioc_1.48.2             MASS_7.3-64                
[153] plyr_1.8.9                  pkgbuild_1.4.8             
[155] parallel_4.4.3              listenv_0.9.1              
[157] ggrepel_0.9.6               forcats_1.0.0              
[159] deldir_2.0-4                graphlayouts_1.2.2         
[161] IRdisplay_1.1               splines_4.4.3              
[163] gridtext_0.1.5              tensor_1.5                 
[165] circlize_0.4.16             colorRamp2_0.1.0           
[167] igraph_2.0.3                uuid_1.2-1                 
[169] spatstat.geom_3.4-1         cubature_2.1.4             
[171] RcppHNSW_0.6.0              ScaledMatrix_1.10.0        
[173] reshape2_1.4.4              stats4_4.4.3               
[175] pkgload_1.4.0               evaluate_1.0.3             
[177] SeuratObject_5.1.0          tweenr_2.0.3               
[179] httpuv_1.6.15               MatrixModels_0.5-4         
[181] RANN_2.6.2                  tidyr_1.3.1                
[183] purrr_1.0.4                 polyclip_1.10-7            
[185] future_1.58.0               scattermore_1.2            
[187] ggplot2_3.5.2               ggforce_0.4.2              
[189] rsvd_1.0.5                  xtable_1.8-4               
[191] e1071_1.7-16                RSpectra_0.16-2            
[193] later_1.4.2                 class_7.3-23               
[195] viridisLite_0.4.2           gsl_2.1-8                  
[197] tibble_3.2.1                memoise_2.0.1              
[199] IRanges_2.36.0              cluster_2.1.8.1            
[201] globals_0.18.0