SeuratClusteringOfAllCells¶
Cluster all cells, including T cells/non-T cells and B cells/non-Bcells using Seurat.
This process will perform clustering on all cells using
Seurat package.
The clusters will then be used to select T/B cells by
TOrBCellSelection process.
Note
If all your cells are all T/B cells (TOrBCellSelection
is not set in configuration), you should not use this process.
Instead, you should use SeuratClustering process
for unsupervised clustering, or SeuratMap2Ref process
for supervised clustering.
Input¶
srtobj: The seurat object loaded by SeuratPreparing
Output¶
outfile: Default:{{in.srtobj | stem}}.qs.
The seurat object with cluster information atseurat_clusters.
Environment Variables¶
ncores(type=int;order=-100): Default:1.
Number of cores to use.
Used infuture::plan(strategy = "multicore", workers = <ncores>)to parallelize some Seurat procedures.
See also: https://satijalab.org/seurat/articles/future_vignette.htmlRunUMAP(ns): Arguments forRunUMAP().
objectis specified internally, and-in the key will be replaced with..
dims=Nwill be expanded todims=1:N; The maximal value ofNwill be the minimum ofNand the number of columns - 1 for each sample.dims(type=int): The number of PCs to usereduction: The reduction to use for UMAP.
If not provided,sobj@misc$integrated_new_reductionwill be used.<more>: See https://satijalab.org/seurat/reference/runumap
RunPCA(ns): Arguments forRunPCA().FindNeighbors(ns): Arguments forFindNeighbors().
objectis specified internally, and-in the key will be replaced with..reduction: The reduction to use.
If not provided,sobj@misc$integrated_new_reductionwill be used.<more>: See https://satijalab.org/seurat/reference/findneighbors
FindClusters(ns): Arguments forFindClusters().
objectis specified internally, and-in the key will be replaced with..
The cluster labels will be saved inseurat_clustersand prefixed with "c".
The first cluster will be "c1", instead of "c0".resolution(type=auto): Default:0.8.
The resolution of the clustering. You can have multiple resolutions as a list or as a string separated by comma.
Ranges are also supported, for example:0.1:0.5:0.1will generate0.1, 0.2, 0.3, 0.4, 0.5. The step can be omitted, defaulting to 0.1.
The results will be saved inseurat_clusters_<resolution>.
The final resolution will be used to define the clusters atseurat_clusters.<more>: See https://satijalab.org/seurat/reference/findclusters
cache(type=auto): Default:/tmp.
Where to cache the information at different steps.
IfTrue, the seurat object will be cached in the job output directory, which will be not cleaned up when job is rerunning.
Set toFalseto not cache the results.