SeuratClusteringOfAllCells¶
Cluster all cells, including T cells and non-T cells using Seurat
This process will perform clustering on all cells using
Seurat
package.
The clusters will then be used to select T cells by
TCellSelection
process.
Note
If all your cells are all T cells (TCellSelection
is
not set in configuration), you should not use this process.
Instead, you should use SeuratClustering
process
for unsupervised clustering, or SeuratMap2Ref
process
for supervised clustering.
Environment Variables¶
ncores
(type=int;order=-100
): Default:1
.
Number of cores to use.
Used infuture::plan(strategy = "multicore", workers = <ncores>)
to parallelize some Seurat procedures.
See also: https://satijalab.org/seurat/articles/future_vignette.htmlScaleData
(ns
): Arguments forScaleData()
.
If you want to re-scale the data by regressing to some variables,Seurat::ScaleData
will be called. If nothing is specified,Seurat::ScaleData
will not be called.vars-to-regress
: The variables to regress on.<more>
: See https://satijalab.org/seurat/reference/scaledata
SCTransform
(ns
): Arguments forSCTransform()
.
If you want to re-scale the data by regressing to some variables,Seurat::SCTransform
will be called. If nothing is specified,Seurat::SCTransform
will not be called.vars-to-regress
: The variables to regress on.<more>
: See https://satijalab.org/seurat/reference/sctransform
RunUMAP
(ns
): Arguments forRunUMAP()
.
object
is specified internally, and-
in the key will be replaced with.
.
dims=N
will be expanded todims=1:N
; The maximal value ofN
will be the minimum ofN
and the number of columns - 1 for each sample.dims
(type=int
): Default:30
.
The number of PCs to usereduction
: The reduction to use for UMAP.
If not provided,sobj@misc$integrated_new_reduction
will be used.<more>
: See https://satijalab.org/seurat/reference/runumap
FindNeighbors
(ns
): Arguments forFindNeighbors()
.
object
is specified internally, and-
in the key will be replaced with.
.reduction
: The reduction to use.
If not provided,sobj@misc$integrated_new_reduction
will be used.<more>
: See https://satijalab.org/seurat/reference/findneighbors
FindClusters
(ns
): Arguments forFindClusters()
.
object
is specified internally, and-
in the key will be replaced with.
.
The cluster labels will be saved inseurat_clusters
and prefixed with "c".
The first cluster will be "c1", instead of "c0".resolution
(type=auto
): Default:0.8
.
The resolution of the clustering. You can have multiple resolutions as a list or as a string separated by comma.
Ranges are also supported, for example:0.1:0.5:0.1
will generate0.1, 0.2, 0.3, 0.4, 0.5
. The step can be omitted, defaulting to 0.1.
The results will be saved inseurat_clusters_<resolution>
.
The final resolution will be used to define the clusters atseurat_clusters
.<more>
: See https://satijalab.org/seurat/reference/findclusters
cache
(type=auto
): Default:/tmp
.
Whether to cache the information at different steps.
IfTrue
, the seurat object will be cached in the job output directory, which will be not cleaned up when job is rerunning.
The cached seurat object will be saved as<signature>.<kind>.RDS
file, where<signature>
is the signature determined by the input and envs of the process.
See https://github.com/satijalab/seurat/issues/7849, https://github.com/satijalab/seurat/issues/5358 and https://github.com/satijalab/seurat/issues/6748 for more details also about reproducibility issues.
To not use the cached seurat object, you can either setcache
toFalse
or delete the cached file at<signature>.RDS
in the cache directory.