TOrBCellSelection¶
Separate T and non-T cells and select T cells; or separate B and non-B cells and select B cells.
If all of your cells are T/B cells, do not set any configurations for this process.
In such a case, SeuratClusteringOfAllCells should
not be used, and SeuratClustering will be clustering all
of the cells, which are all T/B cells.
There are two ways to separate T and non-T cells; or B and non-B cells:
- Use the an expression indicator directly from the metadata.
- Use the expression values of indicator genes, and the clonotype percentage
of the clusters.
You can also use indicator gene expression values only to select T/B cells by
setting envs.ignore_vdj to true.
Input¶
srtobj: Seurat object file in RDS/qs2immdata: Immune repertoire data file in RDS/qs2
Output¶
outfile: Default:{{in.srtobj | stem}}.qs.
Seurat object file in qs2 formatoutdir: Default:details.
Output directory with details
Environment Variables¶
ignore_vdj(flag): Default:False.
Ignore VDJ information for T/B cell selection.
Use only the expression values of indicator genes if True.
In this case, theClonotype_Pctcolumn does not exist in the metadata.
If you want to usek-meansto select T/B cells, you must have more than 1 indicator gene, and the first indicator gene inenvs.indicator_genesmust be a positive marker, which will be used to select the cluster with higher expression values as T/B cells.selector: The expression passed totidyseurat::mutate(is_TCell = ...)to indicate whether a cell is a T cell. For example,Clonotype_Pct > 0.25to indicate cells with clonotype percentage > 25% are T cells.
Ifindicator_genesis provided, the expression values can also be used in the expression. For example,Clonotype_Pct > 0.25 & CD3E > 0.
Ifselectoris not provided, a kmeans clustering will be performed on the expression values ofindicator_genesandClonotype_Pct, with K=2, and the cluster with higher clonotype percentage will be selected as T/B cells.-
indicator_genes(list): Default:['CD3E'].
A list of indicator genes whose expression values and clonotype percentage will be used to determine T/B cells.
The markers could be either positive, such asCD3E,CD3D,CD3G, or negative, such asCD19,CD14,CD68, for T cells. For B cells, markers such asCD19,MS4A1(CD20),CD79A,CD79Bcould be used. -
kmeans(type=json): Default:{'nstart': 25}.
The parameters forkmeansclustering.
Other arguments forstats::kmeanscan be provided here. If there are dots in the argument names, replace them with-.
Examples¶
Use T cell indicator directly¶
If you have a metadata like this:
| id | Clonotype_Pct | seurat_clusters |
|---|---|---|
| 1 | 0.1 | 1 |
| 2 | 0.3 | 2 |
| 3 | 0.5 | 3 |
With the configuration below:
[TOrBCellSelection.envs]
selector = "Clonotype_Pct > 0.25"
The T cells will be selected as:
| id | Clonotype_Pct | seurat_clusters | is_TCell |
|---|---|---|---|
| 1 | 0.1 | 1 | FALSE |
| 2 | 0.3 | 2 | TRUE |
| 3 | 0.5 | 3 | TRUE |
Use indicator genes¶
Let's say we set the indicator genes to ["CD3D", "CD3E", "CD3G"].
The mean expression values will be calculated for each cluster:
| id | Clonotype_Pct | seurat_clusters | CD3D | CD3E | CD3G |
|---|---|---|---|---|---|
| 1 | 0.1 | 1 | 0.1 | 0.0 | 0.1 |
| 2 | 0.3 | 2 | 1.2 | 1.3 | 0.6 |
| 3 | 0.5 | 3 | 1.5 | 0.8 | 0.9 |
Then a kmeans clustering will be performed on the mean expression values of
the indicator genes, together with Clonotype_Pct, with K=2.
| id | Clonotype_Pct | seurat_clusters | CD3D | CD3E | CD3G | is_TCell |
|---|---|---|---|---|---|---|
| 1 | 0.1 | 1 | 0.1 | 0.0 | 0.1 | FALSE |
| 2 | 0.3 | 2 | 1.2 | 1.3 | 0.6 | TRUE |
| 3 | 0.5 | 3 | 1.5 | 0.8 | 0.9 | TRUE |

The cluster with higher clonoype percentage will be selected as T/B cells
(is_selected = TRUE), and sent to
SeuratClustering for
further clustering and downstream analysis.